Applied Data Science with Python for Beginners
Lecture 3 - 11 May 2021

Clean data

Clean data

Data comes often in an untidy form, therefore some data cleaning is necessary

Name	Town	
Clara	Frankfurt a.M.	
Sarah	Frankfurt am Main	
John	Berlin	

Clean data

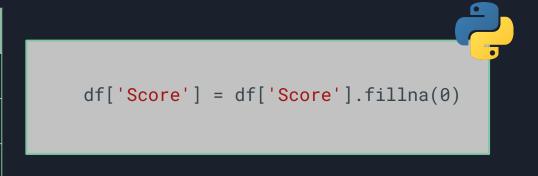
Data comes often in an untidy form, therefore some data cleaning is necessary

Name	Subject	
Clara	Physics	
Sarah	physics	
John	Math	

```
df['Subject'] = df['Subject'].str.lower()
```

Fill missing values

Name	Score	
Clara	10	
Sarah	5	
John	NaN	



Fill missing values

Name	Score	
Clara	10	
Sarah	5	
John	NaN → 0	

```
df['Score'] = df['Score'].fillna(0)
```

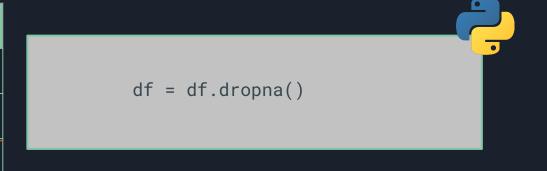
Fill missing values

Name	Score		
Clara	10		
Sarah	5		
John	NaN → 7.5		

```
df['Score'] = df['Score'].fillna(df.mean())
```

Drop missing values

Name	Score		
Clara	10		
Sarah	5		
John	Naiv		



Working with dates

What kind of data type is this: "27-03-2021"?

a) integer b) float c) string d) date


```
df['Birthday'] = pd.to_datetime(df['Birthday'])
```

Name	Birthday	
Clara	"20/10/1995"	
Sarah	"10/01/1999"	
John	"05/03/2001"	


```
df['Birthday'] = pd.to_datetime(df['Birthday'], format="%d/%m/%y")
```

Name	Birthday	
Clara	"20/10/1995"	
Sarah	"10/01/1999"	
John	"05/03/2001"	


```
df['Birthday'] = pd.to_datetime(df['Birthday'], format="%m-%d-%y")
```

Name	Birthday	
Clara	"10-10-1995"	
Sarah	"10-01-1999"	
John	"05-03-2001"	

```
df['day'] = df['Birthday'].dt.day
df['weekday'] = df['Birthday'].dt.weekday
df['month'] = df['Birthday'].dt.month
```

Name	Birthday	day	weekday	month
Clara	"10-10-1995"	10	1	10
Sarah	"10-01-1999"	1	4	10
John	"05-03-2001"	3	3	5

Set date as index

date	City	Temperature
"2021-04-20"	'Frankfurt'	10
"2021-04-21"	'Frankfurt'	11
"2021-04-22"	'Frankfurt'	12

Select timespans

When the index is in datetime format, you can access the data in the following way:

date	City	Temperature
"2021-04-20"	'Frankfurt'	10
"2021-04-21"	'Frankfurt'	11
"2021-04-22"	'Frankfurt'	12

```
df['2021'] # all data from 2021
df['2021-04':'2021-05']
df['2021':]
```

Exercise 1

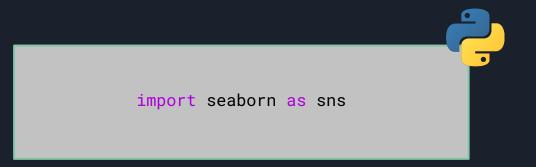
```
df['date'] = pd.to_datetime(df['date'])
df = df.set_index(['date'])
df['2021-04':'2021-05']
```

pandas has a lot of useful functionality

- The official documentation of pandas has more than 3000 pages
- work with missing values
 - o fill with mean value
 - o interpolate between values
 - fill with last value
- Read data from various sources
 - Excel, CSV, SQL, Stata, SPSS, SAS, HTML Tables from websites
- Windowing functions
 - Moving average,...

Advanced plots with Seaborn

- statistical data visualization tools
- based on matplotlib
- makes it easy to create more sophisticated plots
- best to visualize relations between columns of a dataset



Look into a penguins dataset

	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	Male
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	Female
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	Female
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	Female

Look into a penguins dataset

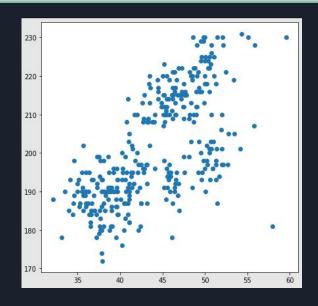
	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	Male
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	Female
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	Female
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	Female

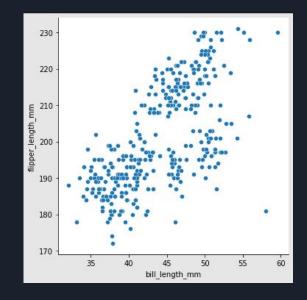
Flipper

Matplotlib vs Seaborn

plt.scatter(df['bill_length_mm'],df['flipper_length_mm'])

sns.relplot(df['bill_length_mm'],df['flipper_length_mm'])



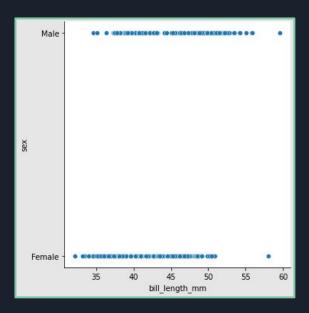


Matplotlib vs Seaborn

plt.scatter(df['bill_length_mm'],df[sex])

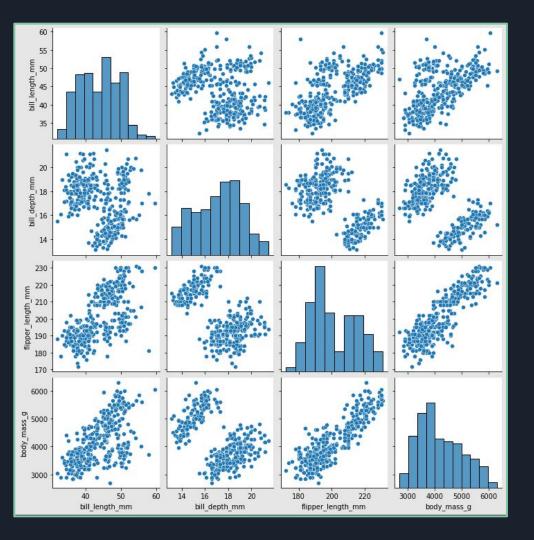
sns.relplot(df['bill_length_mm'],df[sex])

TypeError



Pairplot

sns.pairplot(df)

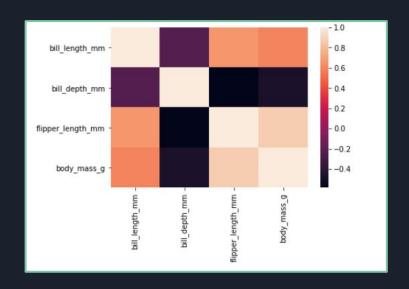


Visualize correlations

l_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g
4 000000			
1.000000	-0.235053	0.656181	0.595110
-0.235053	1.000000	-0.583851	-0.471916
0.656181	-0.583851	1.000000	0.871202
0.595110	-0.471916	0.871202	1.000000
	0.656181	0.656181 -0.583851	0.656181 -0.583851 1.000000

df.corr()

Visualize correlations



Matplotlib & Seaborn Gallery

- Documentation contains example plots
- Each plot comes with the corresponding code
- https://matplotlib.org/stable/gallery/index.html
- https://seaborn.pydata.org/examples/index.html

Exercise 2

sns.pairplot(df)
sns.heatmap(df.corr()

Intro to modelling

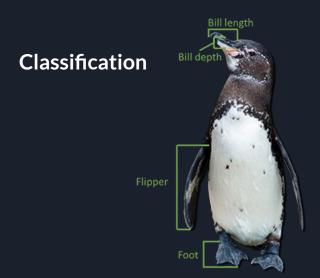
Two types of problems

Regression

How expensive is this house?

Based on information like:

- amount of rooms
- location
- size



What species is this?

Based on information like:

- bill depth / bill length
- flipper length

Housing regression

Old collected data

House	Location	Rooms	Price
Α	Berlin	6	500k €
В	Frankfurt	8	600k €
С	Berlin	7	300k €

New data

House	Location	Rooms	Price
D	Frankfurt	8	?
Е	Frankfurt	5	?
F	Berlin	4	?

Housing regression

Old collected data

House	Location	Rooms	Price
Α	Berlin	6	500k €
В	Frankfurt	8	600k €
С	Berlin	7	300k €

New data

House	Location	Rooms	Price
D	Frankfurt	8	?
Е	Frankfurt	5	?
F	Berlin	4	?

Features

Housing regression

Old collected data

House	Location	Rooms	Price
Α	Berlin	6	500k €
В	Frankfurt	8	600k €
С	Berlin	7	300k €

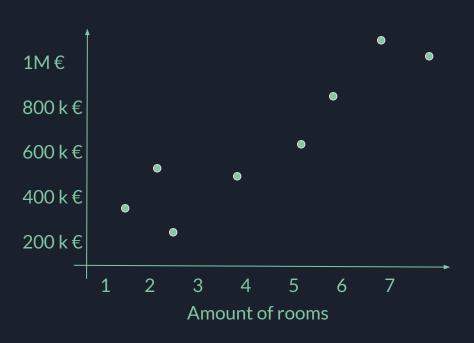
New data

House	Location	Rooms	Price
D	Frankfurt	8	?
Е	Frankfurt	5	?
F	Berlin	4	?

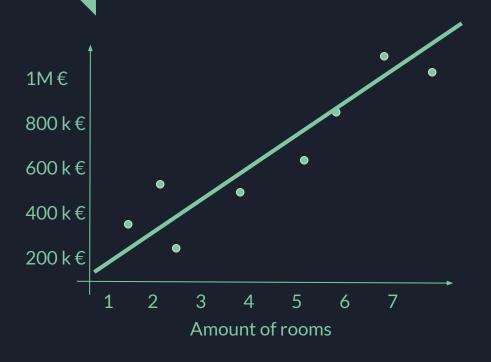
Features

Target column

Linear Regression

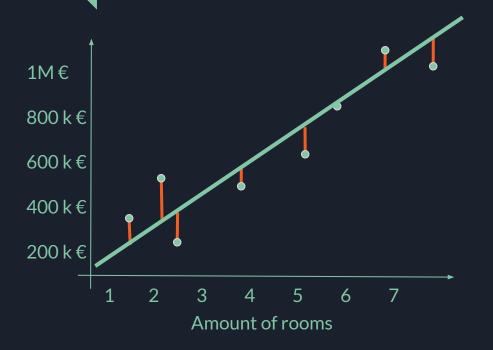


Linear Regression



 $price = a \cdot rooms + b$

Linear Regression



$$price = a \cdot rooms + b$$

RMSE =
$$\sqrt{\frac{1}{T}\sum_{i=1}^{T}(y_{i,predicted}-y_{i,true})^2)}$$

Linear Regression

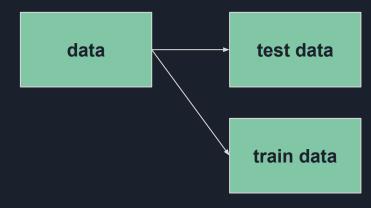
House	Bedrooms	Rooms	Price	
Α	1	6	500k €	
В	3	8	600k €	
С	2	7	300k €	

$$price = a_1 \cdot rooms + a_2 \cdot size + a_3 \cdot bedrooms + b$$

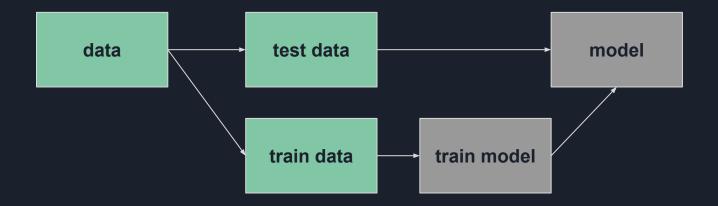
How good is your model?

How does the model perform on unseen data?

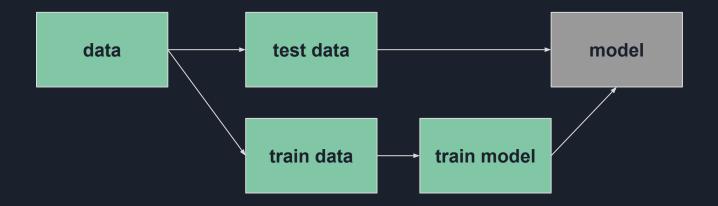
Split data in a train (70%) and test (30%) set to evaluate your model



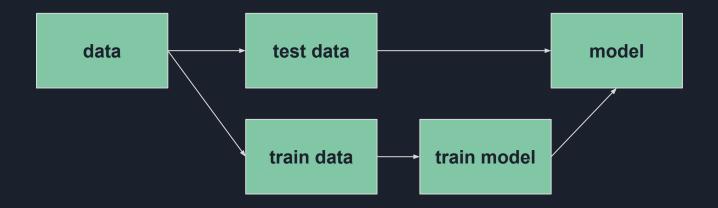
Typical workflow



Typical workflow



Typical workflow



```
÷
```

```
import pandas as pd # data
from sklearn.model_selection import train_test_split # split data
from sklearn.linear_model import LinearRegression # create model
from sklearn.metrics import mean_squared_error # test model
```

```
چ
```

```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

df = pd.read_csv('/content/housing.csv')
X = df[['total_rooms','households']]
y_target = df['median_house_value']
```



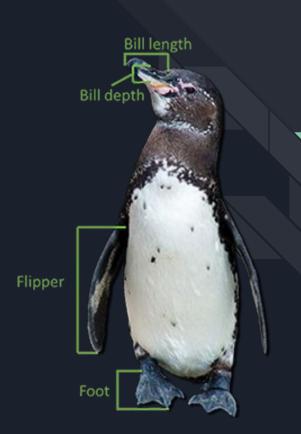
```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
df = pd.read_csv('/content/housing.csv')
X = df[['total_rooms', 'households']]
y_target = df['median_house_value']
X_train, X_test, y_train, y_test = train_test_split(X, y_target, test_size=0.3)
model = LinearRegression()
model.fit(X_train, y_train)
```



```
import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error
df = pd.read_csv('/content/housing.csv')
X = df[['total_rooms', 'households']]
y_target = df['median_house_value']
X_train, X_test, y_train, y_test = train_test_split(X, y_target, test_size=0.3)
model = LinearRegression()
model.fit(X_train, y_train)
y_predict = model.predict(X_test)
rmse = mean_squared_error(y_test, y_predict, squared=False)
```

Exercise 3

Classification

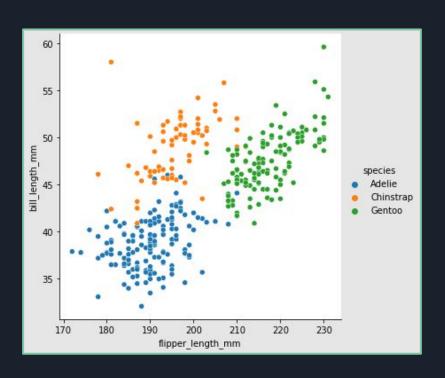


Look into a penguins dataset

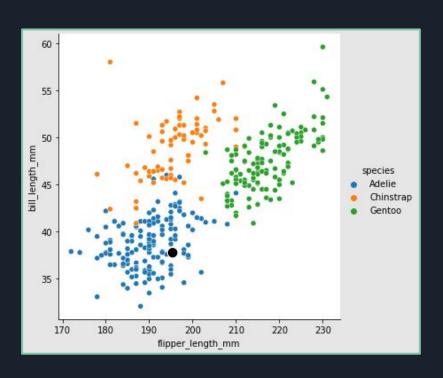
	species	island	bill_length_mm	bill_depth_mm	flipper_length_mm	body_mass_g	sex
0	Adelie	Torgersen	39.1	18.7	181.0	3750.0	Male
1	Adelie	Torgersen	39.5	17.4	186.0	3800.0	Female
2	Adelie	Torgersen	40.3	18.0	195.0	3250.0	Female
3	Adelie	Torgersen	NaN	NaN	NaN	NaN	NaN
4	Adelie	Torgersen	36.7	19.3	193.0	3450.0	Female

Flipper

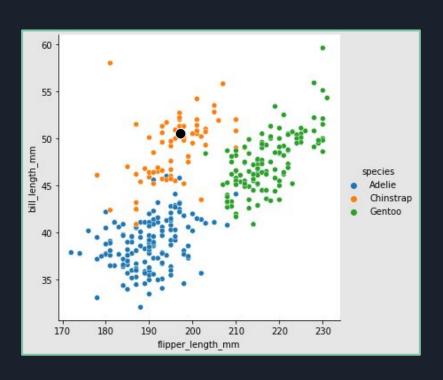
Penguin classification



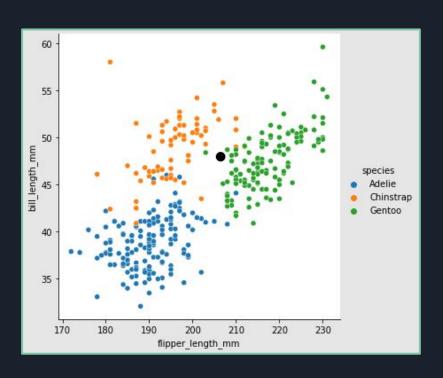
To which species corresponds the black dot?

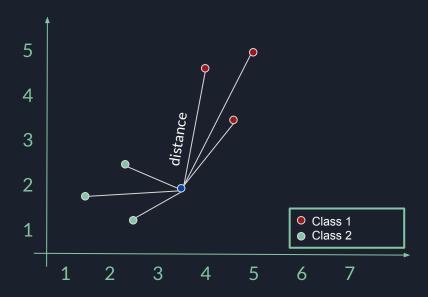


To which species corresponds the black dot?



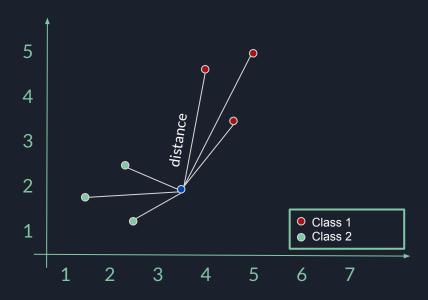
To which species corresponds the black dot?





1. Compute distance to other points

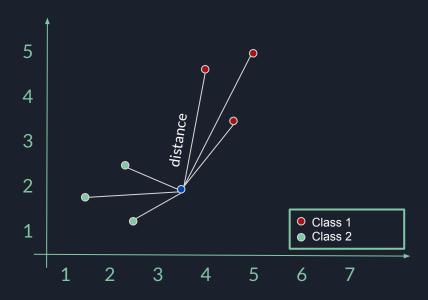
Point	distance	Class	
А	6	1	
В	5	1	
С	2	2	
D	4	1	
Е	3	2	



- 1. Compute distance to other points
- 2. Take n points with shortest distance

Point	distance	Class	
А	6	1	
В	5	1	
С	2	2	
D	4	1	
Е	3	2	

k=3



- 1. Compute distance to other points
- 2. Take n points with shortest distance
- 3. Point classified to class with most occurences

Point	distance	Class	
Α	6	1	
В	5	1	
С	2	2	
D	4	1	
Е	3	2	

k=3

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import seaborn as sns
```



```
ب
```

```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import seaborn as sns

df = sns.load_dataset("penguins")
X = df[['bill_length_mm','bill_depth_mm','flipper_length_mm']]
y_target = df['species']

X_train, X_test, y_train, y_test = train_test_split(X, y_target, test_size=0.3)
```



```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import seaborn as sns
df = sns.load_dataset("penguins")
X = df[['bill_length_mm','bill_depth_mm','flipper_length_mm']]
y_target = df['species']
X_train, X_test, y_train, y_test = train_test_split(X, y_target, test_size=0.3)
model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_train, y_train)
```



```
from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import seaborn as sns
df = sns.load_dataset("penguins")
X = df[['bill_length_mm','bill_depth_mm','flipper_length_mm']]
y_target = df['species']
X_train, X_test, y_train, y_test = train_test_split(X, y_target, test_size=0.3)
model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_train, y_train)
y_prediction = model.predict(X_test)
accuracy = accuracy_score(y_prediction, y_test)
```

Install Python locally

Anaconda distribution

- Python interpreter
- Jupyter Notebooks
- Environment to manage / update packages
- Runs on Windows, Mac and Linux

Installation:

https://docs.anaconda.com/anaconda/install/

Getting started:

https://docs.anaconda.com/anaconda/user-guide/getting-started/