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Clean data



Clean data

Name Town

Clara Frankfurt a.M.

Sarah Frankfurt am Main

John Berlin

Data comes often in an untidy form, therefore some data cleaning is 
necessary

df1['Town'] = df1['Town'].str.replace(

'a.M.',

             'am Main')



Clean data

Name Subject

Clara Physics

Sarah physics

John Math

Data comes often in an untidy form, therefore some data cleaning is 
necessary

df[’Subject’] = df[’Subject’].str.lower()



Fill missing values

Name Score

Clara 10

Sarah 5

John NaN

df['Score'] = df['Score'].fillna(0)



Fill missing values

Name Score

Clara 10

Sarah 5

John NaN → 0

df['Score'] = df['Score'].fillna(0)



Fill missing values

Name Score

Clara 10

Sarah 5

John NaN → 7.5

df['Score'] = df['Score'].fillna(df.mean())



Drop missing values

Name Score

Clara 10

Sarah 5

John NaN

df = df.dropna()



Working with dates



What kind of data type is this : "27-03-2021" ?

a) integer    b)  float    c) string    d) date



Transform string to datetime object

df[’Birthday’] = pd.to_datetime(df[’Birthday’])

Name Birthday

Clara “20/10/1995”

Sarah “10/01/1999”

John “05/03/2001”



Transform string to datetime object

df[’Birthday’] = pd.to_datetime(df[’Birthday’], format=”%d/%m/%y”)

Name Birthday

Clara “20/10/1995”

Sarah “10/01/1999”

John “05/03/2001”



Transform string to datetime object

df[’Birthday’] = pd.to_datetime(df[’Birthday’], format=”%m-%d-%y”)

Name Birthday

Clara “10-10-1995”

Sarah “10-01-1999”

John “05-03-2001”



Transform string to datetime object

df['day'] = df['Birthday'].dt.day
df['weekday'] = df['Birthday'].dt.weekday
df['month'] = df['Birthday'].dt.month

Name Birthday day weekday month

Clara “10-10-1995” 10 1 10

Sarah “10-01-1999” 1 4 10

John “05-03-2001” 3 3 5



Set date as index

date City Temperature

“2021-04-20” ‘Frankfurt’ 10

“2021-04-21” ‘Frankfurt’ 11

“2021-04-22” ‘Frankfurt’ 12

df = df.set_index(['date'])



Select timespans

When the index is in datetime format, you can access the data in the following way:

df['2021'] # all data from 2021 

df['2021-04':'2021-05'] 

df['2021':]   

date City Temperature

“2021-04-20” ‘Frankfurt’ 10

“2021-04-21” ‘Frankfurt’ 11

“2021-04-22” ‘Frankfurt’ 12



Exercise 1
df['date'] = pd.to_datetime(df['date'])

df = df.set_index(['date'])

df['2021-04':'2021-05'] 



pandas has a lot of useful functionality

● The official documentation of pandas has more than 3000 pages

● work with missing values
○ fill with mean value

○ interpolate between values

○ fill with last value

● Read data from various sources
○ Excel, CSV,  SQL,  Stata, SPSS, SAS, HTML Tables from websites

● Windowing functions
○ Moving average,...



Advanced plots with 
Seaborn



- library

● statistical data visualization tools

● based on matplotlib

● makes it easy to create more sophisticated plots

● best to visualize relations between columns of a dataset

import seaborn as sns



Look into a penguins dataset



Look into a penguins dataset

Source: 
https://www.galapagos.org/blog/the-measure-of-a-penguin/



Matplotlib vs Seaborn

plt.scatter(df['bill_length_mm'],df['flipper_length_mm']) sns.relplot(df['bill_length_mm'],df['flipper_length_mm'])



Matplotlib vs Seaborn

plt.scatter(df['bill_length_mm'],df[sex]) sns.relplot(df['bill_length_mm'],df[sex])

TypeError



Pairplot

sns.pairplot(df)



Visualize correlations

df.corr()



Visualize correlations

sns.heatmap(df.corr())



Matplotlib & Seaborn Gallery

● Documentation contains example plots

● Each plot comes with the corresponding code

● https://matplotlib.org/stable/gallery/index.html

● https://seaborn.pydata.org/examples/index.html

https://matplotlib.org/stable/gallery/index.html
https://seaborn.pydata.org/examples/index.html


Exercise 2 sns.pairplot(df)
sns.heatmap(df.corr()



Intro to modelling



Two types of problems

Regression Classification

How expensive is this house?

Based on information like:

● amount of rooms
● location
● size

What species is this?

Based on information like:

● bill depth / bill length
● flipper length

Source: https://avantecture.com/p/phoenixsee/



Housing regression

House Location Rooms Price

A Berlin 6 500k €

B Frankfurt 8 600k €

C Berlin 7 300k €

House Location Rooms Price

D Frankfurt 8 ?

E Frankfurt 5 ?

F Berlin 4 ?

Old collected data New data



Housing regression

House Location Rooms Price

A Berlin 6 500k €

B Frankfurt 8 600k €

C Berlin 7 300k €

House Location Rooms Price

D Frankfurt 8 ?

E Frankfurt 5 ?

F Berlin 4 ?

Old collected data New data

Features



Housing regression

House Location Rooms Price

A Berlin 6 500k €

B Frankfurt 8 600k €

C Berlin 7 300k €

House Location Rooms Price

D Frankfurt 8 ?

E Frankfurt 5 ?

F Berlin 4 ?

Old collected data New data

Features Target column



Linear Regression

Amount of rooms

 1 2 3 4 5 6 7     

1M €

800 k €

600 k €

400 k €

200 k €



Linear Regression

Amount of rooms
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Linear Regression

Amount of rooms

 1 2 3 4 5 6 7     

1M €

800 k €

600 k €

400 k €

200 k €

RMSE =



Linear Regression

House Bedrooms Rooms Price

A 1 6 500k €

B 3 8 600k €

C 2 7 300k €



How good is your model?

How does the model perform on unseen data?

Split data in a train (70%) and test (30%) set to evaluate your model

data

train data

test data



Typical workflow

data

train data

test data

train model

model



Typical workflow

data
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test data
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Typical workflow

data

train data

test data

train model

model



Linear Regression with Python

import pandas as pd # data
from sklearn.model_selection import train_test_split # split data
from sklearn.linear_model import LinearRegression # create model
from sklearn.metrics import mean_squared_error # test model



Linear Regression with Python

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

df = pd.read_csv('/content/housing.csv')
X = df[['total_rooms','households']]
y_target = df['median_house_value']
 



Linear Regression with Python

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

df = pd.read_csv('/content/housing.csv')
X = df[['total_rooms','households']]
y_target = df['median_house_value']
 
X_train, X_test, y_train, y_test = train_test_split(X, y_target, test_size=0.3)
model = LinearRegression()
model.fit(X_train, y_train)



Linear Regression with Python

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

df = pd.read_csv('/content/housing.csv')
X = df[['total_rooms','households']]
y_target = df['median_house_value']
 
X_train, X_test, y_train, y_test = train_test_split(X, y_target, test_size=0.3)
model = LinearRegression()
model.fit(X_train, y_train)

y_predict = model.predict(X_test)
rmse = mean_squared_error(y_test, y_predict, squared=False)



Exercise 3



Classification



Look into a penguins dataset

Source: 
https://www.galapagos.org/blog/the-measure-of-a-penguin/



Penguin classification



To which species corresponds the black dot?



To which species corresponds the black dot?



To which species corresponds the black dot?



k-nearest-neighbors (kNN) Algorithm
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k-nearest-neighbors (kNN) Algorithm

 1 2 3 4 5 6 7     

5

4

3

2

1
    Class 1
    Class 2

1. Compute distance to other points
2. Take n points with shortest distance
3. Point classified to class with most 

occurences
d

is
ta

nc
e

Point distance Class

A 6 1

B 5 1

C 2 2

D 4 1

E 3 2

k=3



kNN with Python

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import seaborn as sns



kNN with Python

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import seaborn as sns

df = sns.load_dataset("penguins")
X = df[['bill_length_mm','bill_depth_mm','flipper_length_mm']]
y_target = df['species']
 
X_train, X_test, y_train, y_test = train_test_split(X, y_target, test_size=0.3)



kNN with Python

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import seaborn as sns

df = sns.load_dataset("penguins")
X = df[['bill_length_mm','bill_depth_mm','flipper_length_mm']]
y_target = df['species']
 
X_train, X_test, y_train, y_test = train_test_split(X, y_target, test_size=0.3)

model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_train, y_train)



kNN with Python

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import seaborn as sns

df = sns.load_dataset("penguins")
X = df[['bill_length_mm','bill_depth_mm','flipper_length_mm']]
y_target = df['species']
 
X_train, X_test, y_train, y_test = train_test_split(X, y_target, test_size=0.3)

model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_train, y_train)

y_prediction = model.predict(X_test)
accuracy = accuracy_score(y_prediction, y_test)



Install Python locally



Anaconda distribution

● Python interpreter
● Jupyter Notebooks
● Environment to manage / update packages
● Runs on Windows, Mac and Linux

Installation:
https://docs.anaconda.com/anaconda/install/

Getting started:
https://docs.anaconda.com/anaconda/user-guide/getting-started/

https://docs.anaconda.com/anaconda/install/
https://docs.anaconda.com/anaconda/user-guide/getting-started/

