
Applied Data Science with
Python for Beginners
 Lecture 3 - 11 May 2021

Clean data

Clean data

Name Town

Clara Frankfurt a.M.

Sarah Frankfurt am Main

John Berlin

Data comes often in an untidy form, therefore some data cleaning is
necessary

df1['Town'] = df1['Town'].str.replace(

'a.M.',

 'am Main')

Clean data

Name Subject

Clara Physics

Sarah physics

John Math

Data comes often in an untidy form, therefore some data cleaning is
necessary

df[’Subject’] = df[’Subject’].str.lower()

Fill missing values

Name Score

Clara 10

Sarah 5

John NaN

df['Score'] = df['Score'].fillna(0)

Fill missing values

Name Score

Clara 10

Sarah 5

John NaN → 0

df['Score'] = df['Score'].fillna(0)

Fill missing values

Name Score

Clara 10

Sarah 5

John NaN → 7.5

df['Score'] = df['Score'].fillna(df.mean())

Drop missing values

Name Score

Clara 10

Sarah 5

John NaN

df = df.dropna()

Working with dates

What kind of data type is this : "27-03-2021" ?

a) integer b) float c) string d) date

Transform string to datetime object

df[’Birthday’] = pd.to_datetime(df[’Birthday’])

Name Birthday

Clara “20/10/1995”

Sarah “10/01/1999”

John “05/03/2001”

Transform string to datetime object

df[’Birthday’] = pd.to_datetime(df[’Birthday’], format=”%d/%m/%y”)

Name Birthday

Clara “20/10/1995”

Sarah “10/01/1999”

John “05/03/2001”

Transform string to datetime object

df[’Birthday’] = pd.to_datetime(df[’Birthday’], format=”%m-%d-%y”)

Name Birthday

Clara “10-10-1995”

Sarah “10-01-1999”

John “05-03-2001”

Transform string to datetime object

df['day'] = df['Birthday'].dt.day
df['weekday'] = df['Birthday'].dt.weekday
df['month'] = df['Birthday'].dt.month

Name Birthday day weekday month

Clara “10-10-1995” 10 1 10

Sarah “10-01-1999” 1 4 10

John “05-03-2001” 3 3 5

Set date as index

date City Temperature

“2021-04-20” ‘Frankfurt’ 10

“2021-04-21” ‘Frankfurt’ 11

“2021-04-22” ‘Frankfurt’ 12

df = df.set_index(['date'])

Select timespans

When the index is in datetime format, you can access the data in the following way:

df['2021'] # all data from 2021

df['2021-04':'2021-05']

df['2021':]

date City Temperature

“2021-04-20” ‘Frankfurt’ 10

“2021-04-21” ‘Frankfurt’ 11

“2021-04-22” ‘Frankfurt’ 12

Exercise 1
df['date'] = pd.to_datetime(df['date'])

df = df.set_index(['date'])

df['2021-04':'2021-05']

pandas has a lot of useful functionality

● The official documentation of pandas has more than 3000 pages

● work with missing values
○ fill with mean value

○ interpolate between values

○ fill with last value

● Read data from various sources
○ Excel, CSV, SQL, Stata, SPSS, SAS, HTML Tables from websites

● Windowing functions
○ Moving average,...

Advanced plots with
Seaborn

- library

● statistical data visualization tools

● based on matplotlib

● makes it easy to create more sophisticated plots

● best to visualize relations between columns of a dataset

import seaborn as sns

Look into a penguins dataset

Look into a penguins dataset

Source:
https://www.galapagos.org/blog/the-measure-of-a-penguin/

Matplotlib vs Seaborn

plt.scatter(df['bill_length_mm'],df['flipper_length_mm']) sns.relplot(df['bill_length_mm'],df['flipper_length_mm'])

Matplotlib vs Seaborn

plt.scatter(df['bill_length_mm'],df[sex]) sns.relplot(df['bill_length_mm'],df[sex])

TypeError

Pairplot

sns.pairplot(df)

Visualize correlations

df.corr()

Visualize correlations

sns.heatmap(df.corr())

Matplotlib & Seaborn Gallery

● Documentation contains example plots

● Each plot comes with the corresponding code

● https://matplotlib.org/stable/gallery/index.html

● https://seaborn.pydata.org/examples/index.html

https://matplotlib.org/stable/gallery/index.html
https://seaborn.pydata.org/examples/index.html

Exercise 2 sns.pairplot(df)
sns.heatmap(df.corr()

Intro to modelling

Two types of problems

Regression Classification

How expensive is this house?

Based on information like:

● amount of rooms
● location
● size

What species is this?

Based on information like:

● bill depth / bill length
● flipper length

Source: https://avantecture.com/p/phoenixsee/

Housing regression

House Location Rooms Price

A Berlin 6 500k €

B Frankfurt 8 600k €

C Berlin 7 300k €

House Location Rooms Price

D Frankfurt 8 ?

E Frankfurt 5 ?

F Berlin 4 ?

Old collected data New data

Housing regression

House Location Rooms Price

A Berlin 6 500k €

B Frankfurt 8 600k €

C Berlin 7 300k €

House Location Rooms Price

D Frankfurt 8 ?

E Frankfurt 5 ?

F Berlin 4 ?

Old collected data New data

Features

Housing regression

House Location Rooms Price

A Berlin 6 500k €

B Frankfurt 8 600k €

C Berlin 7 300k €

House Location Rooms Price

D Frankfurt 8 ?

E Frankfurt 5 ?

F Berlin 4 ?

Old collected data New data

Features Target column

Linear Regression

Amount of rooms

 1 2 3 4 5 6 7

1M €

800 k €

600 k €

400 k €

200 k €

Linear Regression

Amount of rooms

 1 2 3 4 5 6 7

1M €

800 k €

600 k €

400 k €

200 k €

Linear Regression

Amount of rooms

 1 2 3 4 5 6 7

1M €

800 k €

600 k €

400 k €

200 k €

RMSE =

Linear Regression

House Bedrooms Rooms Price

A 1 6 500k €

B 3 8 600k €

C 2 7 300k €

How good is your model?

How does the model perform on unseen data?

Split data in a train (70%) and test (30%) set to evaluate your model

data

train data

test data

Typical workflow

data

train data

test data

train model

model

Typical workflow

data

train data

test data

train model

model

Typical workflow

data

train data

test data

train model

model

Linear Regression with Python

import pandas as pd # data
from sklearn.model_selection import train_test_split # split data
from sklearn.linear_model import LinearRegression # create model
from sklearn.metrics import mean_squared_error # test model

Linear Regression with Python

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

df = pd.read_csv('/content/housing.csv')
X = df[['total_rooms','households']]
y_target = df['median_house_value']

Linear Regression with Python

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

df = pd.read_csv('/content/housing.csv')
X = df[['total_rooms','households']]
y_target = df['median_house_value']

X_train, X_test, y_train, y_test = train_test_split(X, y_target, test_size=0.3)
model = LinearRegression()
model.fit(X_train, y_train)

Linear Regression with Python

import pandas as pd
from sklearn.model_selection import train_test_split
from sklearn.linear_model import LinearRegression
from sklearn.metrics import mean_squared_error

df = pd.read_csv('/content/housing.csv')
X = df[['total_rooms','households']]
y_target = df['median_house_value']

X_train, X_test, y_train, y_test = train_test_split(X, y_target, test_size=0.3)
model = LinearRegression()
model.fit(X_train, y_train)

y_predict = model.predict(X_test)
rmse = mean_squared_error(y_test, y_predict, squared=False)

Exercise 3

Classification

Look into a penguins dataset

Source:
https://www.galapagos.org/blog/the-measure-of-a-penguin/

Penguin classification

To which species corresponds the black dot?

To which species corresponds the black dot?

To which species corresponds the black dot?

k-nearest-neighbors (kNN) Algorithm

 1 2 3 4 5 6 7

5

4

3

2

1
 Class 1
 Class 2

k-nearest-neighbors (kNN) Algorithm

 1 2 3 4 5 6 7

5

4

3

2

1
 Class 1
 Class 2

1. Compute distance to other points

d
is

ta
nc

e

Point distance Class

A 6 1

B 5 1

C 2 2

D 4 1

E 3 2

k-nearest-neighbors (kNN) Algorithm

 1 2 3 4 5 6 7

5

4

3

2

1
 Class 1
 Class 2

1. Compute distance to other points
2. Take n points with shortest distance

d
is

ta
nc

e

Point distance Class

A 6 1

B 5 1

C 2 2

D 4 1

E 3 2

k=3

k-nearest-neighbors (kNN) Algorithm

 1 2 3 4 5 6 7

5

4

3

2

1
 Class 1
 Class 2

1. Compute distance to other points
2. Take n points with shortest distance
3. Point classified to class with most

occurences
d

is
ta

nc
e

Point distance Class

A 6 1

B 5 1

C 2 2

D 4 1

E 3 2

k=3

kNN with Python

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import seaborn as sns

kNN with Python

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import seaborn as sns

df = sns.load_dataset("penguins")
X = df[['bill_length_mm','bill_depth_mm','flipper_length_mm']]
y_target = df['species']

X_train, X_test, y_train, y_test = train_test_split(X, y_target, test_size=0.3)

kNN with Python

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import seaborn as sns

df = sns.load_dataset("penguins")
X = df[['bill_length_mm','bill_depth_mm','flipper_length_mm']]
y_target = df['species']

X_train, X_test, y_train, y_test = train_test_split(X, y_target, test_size=0.3)

model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_train, y_train)

kNN with Python

from sklearn.neighbors import KNeighborsClassifier
from sklearn.model_selection import train_test_split
from sklearn.metrics import accuracy_score
import seaborn as sns

df = sns.load_dataset("penguins")
X = df[['bill_length_mm','bill_depth_mm','flipper_length_mm']]
y_target = df['species']

X_train, X_test, y_train, y_test = train_test_split(X, y_target, test_size=0.3)

model = KNeighborsClassifier(n_neighbors=3)
model.fit(X_train, y_train)

y_prediction = model.predict(X_test)
accuracy = accuracy_score(y_prediction, y_test)

Install Python locally

Anaconda distribution

● Python interpreter
● Jupyter Notebooks
● Environment to manage / update packages
● Runs on Windows, Mac and Linux

Installation:
https://docs.anaconda.com/anaconda/install/

Getting started:
https://docs.anaconda.com/anaconda/user-guide/getting-started/

https://docs.anaconda.com/anaconda/install/
https://docs.anaconda.com/anaconda/user-guide/getting-started/

