
Applied Data Science with
Python for Beginners
 Lecture 1 - 27 April 2021

This course

Excel vs Python

1. Write code in text editor

2. Execute code with Python

3. Result will be returned

data = pd.read_csv(file)
mean = data.mean()
print(mean)

1. Select data

2. Click on buttons :)

A General Purpose Coding Language

Web Development

Data Science /
Machine Learning

Desktop Apps
Network Servers

Automation

Structure of the course

Lectures (3 times)

■ Introduce new concepts on slides
■ Your turn! - Small exercises (~5 minutes)
■ Live coding in Google Colab
■ Slides and notebooks will be uploaded

Homework (3 times)

■ each week a set of exercises about the
topics from the lecture (~ 1h)

■ solutions will be provided, no hand-in

Questions?
felix.schneider@tech-academy.io

Topics of the course

1.Lecture

Python Fundamentals

Basic concepts,
Variables, basic data
structures, functions

2.Lecture

Data Wrangling &
Simple visualizations

How to process data with
pandas and visualize it
with matplotlib

3.Lecture

Visualizations &
Modelling

More plots with matplotlib
and seaborn and an
introduction to modelling

Google Colab

■ Environment to write and execute code

■ Accessed via Browser (runs on Google Servers)

■ No pre-configurations necessary

■ Independent from your local machine

■ Jupyter Notebook format heavily used in

data science community

Fundamentals - Data
Types

How is data stored and processed ?

■ Values are stored in variables
■ The four most important data types in Python:

integer = 10

float = 2.8

string = "This is a string"

boolean = True

How is data stored and processed ?

■ We can compute with these variables

a = 10
b = 5
c = a + b
print(c)

Output: 15

What kind of data type is this : "27-03-2021" ?

a) integer b) float c) string d) date

What kind of data type is this : "27-03-2021" ?

a) integer b) float c) string d) date

Fundamentals - Data
Structures

Data Structures - Lists

We can combine values in lists

a = [5, 3, 9, 7, 4, 10, 3]
b = ["Justus", "Peter", "Bob"]

Data Structures - Lists

Value 5 3 9 7 4 10 3

Index 0 1 2 3 4 5 6

Data Structures - Lists

Access the data with an index

a = [5, 3, 9, 7, 4, 10, 3]
b = ["Justus", "Peter", "Bob"]
a[0] → 5

Data Structures - Lists

Access the data with an index

a = [5, 3, 9, 7, 4, 10, 3]
b = ["Justus", "Peter", "Bob"]
a[0] → 5
b[1] → "Peter"

Data Structures - Lists

a[start:stop:step_size]

Data Structures - Lists

Value 5 3 9 7 4 10 3

Index 0 1 2 3 4 5 6

a[1:4]

Data Structures - Lists

Value 5 3 9 7 4 10 3

Index 0 1 2 3 4 5 6

a[1:4:2]

Data Structures - Dictionaries

translate = {"Eins":"One",

 "Zwei":"Two",

 "Ja":"Yes"}

translate["Eins"] → "One"

Quick - Summary

Data types

integer 2

float 2.32

string "Text"

boolean True/False

Data structures

lists: a = [1,2,3]

dictionary: b={“a”:1}

Exercise 1

Data structures - Hints

lists:

create: a = [1,2,3]

access: a[0]

dictionary:

create: b={“a”:1}

access: b[“a”]

Relational operators

● Compare variables

a == b → is a equal to b?

 returns True / False

● Combine operators with “and” / “or”

“and”: (a >= b) & (a<=c)

“or”: (a >= b) | (a<=c)

== is equal

< smaller than

> greater than

<= smaller or
equal than

>= greater or
equal than

!= not equal to

a = 1

b = 2

c = 2

(a>b) or (a<=c)

a = 1

b = 2

c = 2

(a>b) or (a<=c)

False or True

a = 1

b = 2

c = 2

(a>b) or (a<=c)

False or True → True

Very important for filtering

Select all Names with following condition:

(Gender == “F”) & (Age > 20)

Name Gender Age

“Tim” “M” 20

“Nina” “F” 24

“John” “M” 26

Fundamentals - Control
Flow

 counter = 0
 a = [5, 9, 21,30]

counter = counter + 1

if element < 10 if element >= 10

counter = counter

Repeat for each
element in list

Count numbers smaller than 10 in a list

Control Flow - if / else

● Control which block of code will be executed

● Blocks defined by indentation

if BOOLEAN-CONDITION:

 print("A")

else:

 print("B")

Control Flow - if / else

● Control which block of code will be executed

● Blocks defined by indentation

if a>2:

 print("A")

else:

 print("B")

Control Flow - for-loop

● Repeat blocks of your code

● Use different values in each loop

for element in [1,2,3,4]:

 print(element)

Exercise 2

Count amount of numbers in a list which are smaller than 5

for element in [1,2,3,4]:

 print(element)

if a>2:

 print("A")

else:

 print("B")

Fundamentals -
Functions & Libraries

a = doSomething(b)

functions

Variable for
return value

Name of function

Parameter of function
(can be a value, variable, list, dict,...)

functions - round function

 b = 5.2

 a = round(b)

→ a = 5.0

Built-in Functions

print() sum()

round() abs()

min() range()

max() sorted()

round(2.34) == ?

abs(-2) == ?

a = [0,4,1,3,2]

max(a) == ?

sum(a) == ?

len(a) == ?

sorted(a) == ?

round(2.34) == 2.0

abs(-2) == 2

a = [0,4,1,3,2]

max(a) == 4

sum(a) == 10

len(a) == 5

sorted(a) == [0,1,2,3,4]

● Define own functions for repeating tasks

● reduce amount of code lines

Create own functions

def my_function(a,b):

 c = ...

 return c

● Define own functions for repeating tasks

● reduce amount of code lines

Create own functions

def my_function(a,b):

 return a + b

my_function(1,2) # 3

Exercise 3

Convert your code which counts amount of numbers smaller 10 into a function

 def smaller_than(numbers, value):
 # your code here

return counter

Libraries

● A collection of functions is bundled in a library
● we import these libraries and can use the defined functions

● Some libraries come with a Python installation, some need to be installed

… for plotting and visualization

… for working with tabular data (Excel-files, csv-files,...)

… creating machine learning models

